

Welcome to Nurtch documentation!

Nurtch is an internal documentation platform based on Jupyter Notebooks. It’s used by teams to write executable runbooks for quick incident response. Notebook supports markdown text, images, executable code, and output all within the single document served in a browser.

Nurtch is self hosted for complete control, security, and access to your infrastructure in VPC. All Notebooks are stored in S3 bucket you configure. See this for installation.

While Nurtch is great for storing runbooks, it’s also suitable to share any internal documentation within team. You can write onboarding guides, retrieve metrics, automate walk-up requests and such.
This documentation is split into two sections:

	
	Nurtch Platform

	We talk about the actual Jupyter UI that’s used to write, edit and execute Notebooks. We provide ability to search documents, publish them to S3, store credentials, add team members to Nurtch etc. We also talk about some useful features that are built into Jupyter Notebooks.

	
	Rubix Library

	Rubix ™ is a Python library that simplifies common DevOps actions by leveraging infrastructure APIs. Simply put, we abstract the complexity of communicating with AWS/Kubernetes/<Your favourtute tool> APIs.

Here are some examples of Rubix methods:

	plot_metrics method fetches metrics data from cloudwatch and renders the graph in Notebook.

	rollback_deployment quickly rollbacks an ECS service to any prior version. First it communicates with ECS to retrieve rollback candidates. Performs a rollback deployment to a version that you select & shows deployment progress.

Table of Contents:

	Nurtch Platform
	Install

	Creating New Runbook

	Editing Runbook

	Add Users to Nurtch

	Run SQL queries in Notebook

	Run shell commands in Notebook

	Rubix Library
	Cloudwatch

	Elastic Container Service (ECS)

	Relational Database Service (RDS)

	Kubernetes

Nurtch Platform

Install

Here are installation instructions for setting up Nurtch. Up to 10 Notebooks and unlimited users are free forever. Beyond that, see pricing. To get in touch, sign up or write to us.

Creating New Runbook

Once you are set up and logged into Nurtch, you can create Notebooks/plain text files/directories. Click New and choose the appropriate option.

[image: ../_images/click_on_new.png]
You can choose programming language while creating Notebooks. Thanks to Jupyter, Nurtch supports execution of all major programming languages. Python kernel comes installed out-of-the-box. For other language kernels write to us and we’ll help you with the build.

Editing Runbook

Any Notebook is opened in the viewing mode by default. You can view content, execute code cells, and see output. Editing is disabled to avoid committing unintentional changes. Click on the EDIT button if you want to edit the Notebook.

[image: ../_images/edit_button.png]
Once editing is enabled you can modify the Notebook as you wish. After editing is done you can Preview the Notebook, if you are satisfied with modifications then Publish the changes to S3. At any time you can Discard your changes to go back to original version.

[image: ../_images/ppd_buttons.png]

Add Users to Nurtch

It’s easy to invite your teammates to Nurtch. Go to the Admin tab after you login and click on Add Users To Nurtch.
Type in email addresses of users you want to add (separated by comma). Key in a temporary password for them to login with.

Once added these users can login with their email address and the temporary password. They are forced to change the password when they login for the first time.
Note that, we do not send email invites via Nurtch to avoid you any SMTP setup. Simply communicate the username (email) and temporary password to newly added users via your regular means of communication.

[image: ../_images/add_users.png]

Run SQL queries in Notebook

It’s super easy to connect to any sql database and run queries against it from the Notebook. There’s a SQL magic that helps you do it. See example below.

[image: ../_images/run_sql_query.png]

Run shell commands in Notebook

You can run shell commands in the Notebook with the help of ! operator. You can also use %%bash magic to run multi-line bash script.
Commands are run on the server where Nurtch is hosted. You can also SSH onto a different machine and run commands there from within the Notebook. See examples below.

[image: ../_images/run_shell_commands.png]

Rubix Library

Rubix ™ is a Python library that simplifies common DevOps actions by leveraging infrastructure APIs. Simply put, we abstract the complexity of communicating with AWS/Kubernetes/<Your favourtute tool> APIs and presenting the result in Notebook.
Explore the integrations below to know more.

There are lots of services/tools we would like to integrate with Rubix. We are adding new integrations everyday and deepening the existing ones. We are prioritizing integrations based on customer requirements. Write to us if you are looking for specific integration and we’ll be happy to build it for you.

Table of Contents:

	Cloudwatch

	Elastic Container Service (ECS)

	Relational Database Service (RDS)

	Kubernetes
	Setup

	Command Line Usage

	API Usage

Cloudwatch

	
plot_metric(namespace, metric_name, **kwargs)

	Fetch metric data from Cloudwatch and render it as a graph inside Notebook.

	Parameters

	
	namespace (str) – The namespace of the metric e.g. AWS/EC2. All Possible values.

	metric_name (str) – Name of the metric e.g. Latency. Here’s a way to list all possible metrics for your namespace.

	**kwargs – These are optional. See below.

	Keyword Arguments (Optional)

	
	
	start_time (datetime.datetime)

	Time from which to fetch metrics data. Defaults to (end_time - 12 hours)

	
	end_time (datetime.datetime)

	Time until which to fetch metrics data. Defaults to current time.

	
	statistics (str)

	Metric statistics for your graph e.g. Minimum, Maximum, Sum, Average. All possible values. Deaults to Average

	
	markers ([datetime.datetime])

	Markers to indicate timestamp of significant events e.g. you can fetch deployment times with this method and plot them as markers to see metrics’s corelation with deployment. Any marker not between start_time and end_time is simply ignored. Defaults to [].

	
	dimensions (dict)

	A name/value pair that uniquely identifies a metric. See this and examples below. When not specified all metrics matching the namespace and metric_name are graphed.

	
	aws_access_key_id (str)

	AWS access key of an IAM user to call cloudwatch API. Defaults to environment variable AWS_ACCESS_KEY_ID. Can be overwritten per method by supplying this keyword argument.

	
	aws_secret_access_key (str)

	AWS secret access key of an IAM user to call cloudwatch API. Defaults to environment variable AWS_SECRET_ACCESS_KEY. Can be overwritten per method by supplying this keyword argument.

	
	aws_region (str)

	AWS region for the resource whose metrics you are plotting. Defaults to environment variable AWS_REGION. Can be overwritten per method by supplying this keyword argument.

	Examples

	

from rubix.aws.cloudwatch import plot_metric

Load balancer P90 latency with deployment time markers
plot_metric(namespace='AWS/ELB',
 metric_name='Latency',
 dimensions={'LoadBalancerName': 'prod-xyz-lb'},
 markers=deployment_times,
 statistics='p90')

Maximum CPU Utilization across EC2 for a specific time period
plot_metric(namespace='AWS/EC2',
 metric_name='CPUUtilization',
 start_time=datetime.datetime(2018, 04, 25),
 end_time=datetime.datetime(2018, 04, 26)
 statistics='Maximum')

	Sample Usage and Output

	[image: ../../_images/plot_metric_example.png]

Elastic Container Service (ECS)

	
rollback_deployment(service, **kwargs)

	Quickly rollback an ECS service to any prior version. This method first communicates with ECS to retrieve rollback candidates (prior task definitions that you can rollback to). Performs a rollback deployment to a version that you select. Shows deployment progress.

	Parameters

	
	service (str) – The name of your ECS service.

	**kwargs – These are optional. See below.

	Keyword Arguments (Optional)

	
	
	cluster (str)

	Name of the ECS cluster to which the service belongs. If the cluster name is not given, ECS uses default cluster. We highly recommend putting your services inside clusters and not using default cluster unless you are just experimenting.

	
	aws_access_key_id (str)

	AWS access key of an IAM user to call ECS APIs. Defaults to environment variable AWS_ACCESS_KEY_ID. Can be overwritten per method by supplying this keyword argument.

	
	aws_secret_access_key (str)

	AWS secret access key of an IAM user to call ECS APIs. Defaults to environment variable AWS_SECRET_ACCESS_KEY. Can be overwritten per method by supplying this keyword argument.

	
	aws_region (str)

	AWS region where the service resides. Defaults to environment variable AWS_REGION. Can be overwritten per method by supplying this keyword argument.

	Examples

	

from rubix.aws.ecs import rollback_deployment

rollback_deployment(service='xyz-api', cluster='prod-cluster')

	Sample Usage and Output

	[image: ../../_images/ecs_rollback.png]

	
get_latest_deployment_status(service, **kwargs)

	Retrieve metadata of last deployment on your ECS service. Metadata includes deployment time, desired/pending/running counts, task definition etc.

	Parameters

	
	service (str) – The name of your ECS service.

	**kwargs – These are optional. See below.

	Returns

	dict – See response section below.

	Keyword Arguments (Optional)

	
	
	cluster (str)

	Name of the ECS cluster to which the service belongs. If the cluster name is not given, ECS uses default cluster.

	
	aws_access_key_id (str)

	AWS access key of an IAM user to call ECS APIs. Defaults to environment variable AWS_ACCESS_KEY_ID. Can be overwritten per method by supplying this keyword argument.

	
	aws_secret_access_key (str)

	AWS secret access key of an IAM user to call ECS APIs. Defaults to environment variable AWS_SECRET_ACCESS_KEY. Can be overwritten per method by supplying this keyword argument.

	
	aws_region (str)

	AWS region where the service resides. Defaults to environment variable AWS_REGION. Can be overwritten per method by supplying this keyword argument.

	Response

	
	
	id (str)

	The ID of the deployment.

	
	taskDefinition (str)

	The most recent task definition that was specified for the service to use.

	
	desiredCount (int)

	The most recent desired count of tasks that was specified for the service to deploy or maintain.

	
	pendingCount (int)

	The number of tasks in the deployment that are in the PENDING status.

	
	runningCount (int)

	The number of tasks in the deployment that are in the RUNNING status.

	
	createdAt (datetime.datetime)

	The Unix time stamp for when the deployment was created.

	
	updatedAt (datetime.datetime)

	The Unix time stamp for when the service was last updated.

	Examples

	

from rubix.aws.ecs import get_latest_deployment_status

get_latest_deployment_status(service='hello-world-service', cluster='prod-cluster')

	Sample Usage and Output

	[image: ../../_images/latest_deployment_status.png]

Relational Database Service (RDS)

Work in progress. Stay tuned.

If you are simply looking for a way to run SQL queries, see Run SQL queries in Notebook.

Kubernetes

Now you can operate Kubernetes cluster from Nurtch notebooks.
You can either use the familiar kubectl commands or use higher level APIs provided by Rubix library.

Setup

Once you login, go to the admin tab and upload Kubernetes config file. The file is typically located at ~/.kube/config. Tip: You might need to press (CMD + Shift + .) on mac to show hidden files in the finder.

[image: ../_images/ss_k8s_config.png]
Once uploaded, wait for a minute for the config to propagate to all the nodes in your cluster. You can verify if the config is propagated as shown below.

[image: ../_images/ss_k8s_verify.png]
That’s it! Now you can use kubectl commands and rubix.kubernetes.* methods to operate your cluster (examples below).

Command Line Usage

You can upload and use your existing scripts in the notebook or use one-off commands as shown in the examples below.

	List all running services.

[image: ../_images/k8s_list_services.png]

	See when deployments occurred in your cluster by checking replica sets.

[image: ../_images/k8s_get_rs.png]

	See the rollout history with kubectl rollout history <resource_name> and rollback to the version you wish.

[image: ../_images/k8s_rollback.png]

	Check the status of your deployment rollout.

[image: ../_images/k8s_rollout_status.png]

API Usage

	
get_latest_deployment_status(service_name, namespace='default', context=None)

	Retrieve metadata of last deployment on your Kubernetes service. Metadata includes deployment time, desired/available/current counts, container image etc.

	Parameters

	
	service (str) – Name of your Kubernetes service.

	namespace (str) – Namespace under which your service is running, if using namespaces.

	context – Context under which your service is running, if using context. Since context specifies the trio of (cluster, user, namespace) you don’t need to specify namespace separately while using context.

	Returns

	dict – See response section below.

	Response

	
	
	desiredCount (int)

	The desired number of replicas of the application.

	
	availableCount (int)

	The number of replicas that are available to your users.

	
	currentCount (int)

	The number of replicas that are currently running.

	
	createdAt (datetime.datetime)

	The Unix time stamp for when the deployment was created.

	
	containerImage (str)

	The name of container image + tag that got deployed.

	Examples

	

from rubix.kubernetes import get_latest_deployment_status

get_latest_deployment_status(service_name='nurtch-1')

	Sample Usage and Output

	[image: ../_images/rubix_k8s_get_deployment_status.png]

Index

 G
 | P
 | R

G

 	
 	get_latest_deployment_status() (built-in function), [1]

P

 	
 	plot_metric() (built-in function)

R

 	
 	rollback_deployment() (built-in function)

Nurtch Documentation

This is documentation repo for the Nurtch platform [https://nurtch.com]. You can find the documentation here [http://docs.nurtch.com/]. If you have any question or suggestion, feel free to open an issue on this repo or write to us.

 _static/plus.png

_images/latest_deployment_status.png
In [3]: get_latest_deployment_status('hello-world-service', cluster='prod-cluster')

Out[3]: {'id': 'ecs-svc/9223370511067826302"',
'taskDefinition': 'arn:aws:ecs:us-east-1:093553009507:task-definition/hello-world:23"',
'desiredCount': 1,
'pendingCount': 0,
'runningCount': O,
'createdAt': datetime.datetime(2018, 5, 8, 19, 12, 29, 505000, tzinfo=tzlocal()),
'updatedAt': datetime.datetime(2018, 5, 8, 19, 12, 29, 505000, tzinfo=tzlocal())}

_images/plot_metric_example.png
In [2]: # plot latency graph with deployment time markers
from rubix.aws.cloudwatch import plot_metric
plot_metric(namespace='AWS/ELB',

metric_name='Latency',

dimensions={'LoadBalancerName':

10k

8k

6k

4k

2k

markers=deployment_times)

LA AN A

'prod-xyz-1b'},

API Latency with Deployment Time

16:00
May 7, 2018

18:00

20:00

22:00

00:00
May 8, 2018

02:00

_images/k8s_rollback.png
In [2]: !kubectl rollout undo deployment/nurtch-1 --to-revision=3

deployment.apps "nurtch-1"

_static/up-pressed.png

_images/k8s_rollout_status.png
In [1]: ! kubectl rollout status deployment/nurtch-1

deployment "nurtch-1" successfully rolled out

_static/up.png

_images/run_shell_commands.png
In [1]:

In [5]:

! df -h # check disk usage

ifree %iused Mounted on

Filesystem Size Used Avail Capacity iused

/dev/disklsl 466Gi 384Gi 78G1i 84% 2580428 9223372036852195379
devfs 190Ki 190Ki 0Bi 100% 658 0
/dev/diskls4 466Gi 3.0Gi 78G1i 4% 3 9223372036854775804
map -hosts 0Bi 0Bi 0Bi 100% 0 0
map auto_home 0Bi 0Bi 0Bi 100% 0 0
%$%bash

RESTART SCRIPT="sudo service nginx restart"
STATUS_SCRIPT="sudo service nginx status"

ssh onto a machine and restart nginx

0%
100%
0%
100%
100%

/

/dev
/private/var/vm
/net

/home

ssh -i ~/.ssh/2018-us-east-2.pem ec2-user@18.204.202.175 "${RESTART SCRIPT} && ${STATUS_ SCRIPT}"

Stopping nginx: [OK]
Starting nginx: [OK]
nginx (pid 29647) is running...

_images/run_sql_query.png
In [2]: # load the extension
%load_ext sql|

connect to database
%$sql postgres://$DB_USER:$DB_PASSWORD@$DB_ENDPOINT:5432/xyz_api_db

run your query
%sgl SELECT pid, query start, query FROM pg_stat activity ORDER BY query_start;

The sgl extension is already loaded. To reload it, use:
$reload_ext sql

* postgres://tankman:***@xyz-api-prod-db.cxvlabuzou3z.ap-south-1.rds.amazonaws.com:5432/xyz_api_db
4 rows affected.

Out[2]: pid query_start query
5543 2018-05-08 15:22:23.584144+00:00 select pg_sleep(5 * 60);
5122 2018-05-08 15:22:49.450373+00:00 ROLLBACK

5847 2018-05-08 15:22:49.481600+00:00 SELECT pid, query_start, query FROM pg_stat_activity ORDER BY query_start;

4541 None <insufficient privilege>

_images/ppd_buttons.png
@ Logout

Trusted | Python3 O

O PREVIEW <4 PUBLISH 1t DISCARD

_images/rubix_k8s_get_deployment_status.png
In [1]: from rubix.kubernetes import get_ latest_deployment_status

get_latest deployment_status(service_name='nurtch-1")

Out[l]: {'desiredCount': 1,
'availableCount': 1,
'currentCount': 1,
'containerImage': 'nurtch/nurtch:30793a725',

'createdAt': datetime.datetime(2018, 6, 22, 8, 23, 28, tzinfo=tzutc())}

_images/ss_k8s_config.png
Upload Kubernetes Config

Upload Kubernetes config file (typically located at ~/.kube/config):

Choose file No file chosen

Close Upload

_images/ss_k8s_verify.png
In [1]: ! 1s -1 ~/.kube/config

-rw-r--r-- 1 root root 5769 Jun 21 12:11 /root/.kube/config

_images/edit_button.png
@ Logout

Trusted | Python3 O

_images/k8s_get_rs.png
In [12]:

! kubectl get rs --sort-by=metadata.creationTimestamp

NAME
nurtch-1-76c866799d
nurtch-1-5c8968b559
nurtch-1-77d£554b74
nurtch-1-b468b8649
nurtch-1-674£87£94d
nurtch-1-6467789fc4
nurtch-1-6£f46b6b5dd
nurtch-1-6b6bcbb6bb
nurtch-1-688d45£894
nurtch-1-849c4£8884
nurtch-1-8668bd5495

DESIRED

HOOOOOOOOOO

CURRENT

HOOOOOOOOOO

READY

HOOOOOOOOOO

AGE
4d
3d
3d
3d
3d
2d
1d
1d
1d
20h
19h

_images/click_on_new.png
Upload
Notebook:
Python 2
Python 3

Other:
Text File
Folder

Terminal

New v

Q

Jo

Jo

Jo

_images/ecs_rollback.png
In [*]: rollback deployment('hello-world-service', cluster='prod-cluster')

Current task definition for service hello-world-service is:: arn:aws:ecs:us-east-1:093553009507:task-definition/hello
-world:22

Task Definitions Container Image

arn:aws:ecs:us-east-1:093553009507:task-definition/hello-world:6 093553009507 .dkr.ecr.us-east-1.amazonaws.com/hello-world:v7
arn:aws:ecs:us-east-1:093553009507:task-definition/hello-world:5 093553009507 .dkr.ecr.us-east-1.amazonaws.com/hello-world:v7
arn:aws:ecs:us-east-1:093553009507:task-definition/hello-world:4 093553009507 .dkr.ecr.us-east-1.amazonaws.com/hello-world:vé
arn:aws:ecs:us-east-1:093553009507:task-definition/hello-world:3 093553009507.dkr.ecr.us-east-1.amazonaws.com/hello-world

arn:aws:ecs:us-east-1:093553009507:task-definition/hello-world:2 093553009507.dkr.ecr.us-east-1.amazonaws.com/hello-world

Enter the task defintion that you want to rollback to: arn:aws:ecs:us-east-1:093553009507:task-definition/hello-worl
d:6

New Task Definition

« Desired Count: 1
« Running Count: 0

Deployment Status

_images/k8s_list_services.png
In [5]: ! kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 100.64.0.1 <none> 443/TCP 4d
nurtch-1 LoadBalancer 100.69.64.62 al92lbef272e8... 80:31616/TCP 3d

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Nurtch documentation!

 		
 Nurtch Platform

 		
 Install

 		
 Creating New Runbook

 		
 Editing Runbook

 		
 Add Users to Nurtch

 		
 Run SQL queries in Notebook

 		
 Run shell commands in Notebook

 		
 Rubix Library

 		
 Cloudwatch

 		
 Elastic Container Service (ECS)

 		
 Relational Database Service (RDS)

 		
 Kubernetes

 		
 Setup

 		
 Command Line Usage

 		
 API Usage

_static/comment-close.png

_images/add_users.png
Add Users

Enter email address and temporary password for new users. They will be prompted for password reset at login

Email Addresses Temporary Password

jon@stark.com, sansa@stark.com WinterlsComing

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

